Какие системы глобальной спутниковой навигации существуют. Стоит ли покупать спутниковый навигатор? Пекин обвалил Уолл-стрит

Управление образования

администрации Балашовского муниципального района

Районная научно-практическая конференция учащихся

«Юные лидеры образования»

_______________________________________________________

Муниципальное общеобразовательное учреждение

Гуманитарно-педагогический лицей-интернат

г. Балашова Саратовской области

«Спутниковые навигационные системы»

секция: «Информатика и современные компьютерные технологии»

Выполнил: Есиков Ярослав,

ученик 11 ф/м класса

Руководитель: Барсукова М.А.,

учитель информатики

Балашов 2008

    Введение

    История спутниковых навигационных систем

    Низкоорбитные спутниковые навигационные системы (СНС)

    Среднеорбитные спутниковые навигационные системы СНС GPS

Спутниковые навигационные системы.

Принципы работы навигационных систем

  • Глобальная навигационная система NAVSTAR

    Российская спутниковая навигационная система ГЛОНАСС

    Европейская система ГАЛИЛЕО

    Еще о ГЛОНАСС и GPS

    Отношение руководства России к системе ГЛОНАСС

    Заключение

    Библиографический список

Введение

Актуальность

Долгие годы все, что связано с высокоточным определением местоположения подвижных объектов, оставалось уделом "привилегированных" систем; эти способы использовались исключительно в мореплавании, воздушной авиации и при картографировании. Создание систем GPS и ГЛОНАСС коренным образом изменило ситуацию. Сегодня приемники GPS/ГЛОНАСС прочно вошли в нашу жизнь, а определение местоположения стало привычной услугой мобильной связи.

Первоначально гарантируемая точность определения местоположения у обеих систем составляла около 100 м. Однако после того, как в 2000 г. основной провайдер услуг GPS (Министерство обороны США) отказался от режима селективного доступа, точность определения координат возросла почти на порядок. Заметим, что применение режима дифференциальных поправок увеличивает точность еще в несколько десятков раз. Казалось бы, сегодня все категории потребителей навигационной информации удовлетворены. Однако активно продолжаются работы по европейскому проекту глобальной навигационной спутниковой системы (Global Navigation Satellite System - GNSS), создаваемой по инициативе EC и Европейского космического агентства.

Объект исследования

Спутниковые навигационные системы

Предмет исследования

Принцип работы спутниковых навигационных систем

Структура

Работа состоит из введения, 4 частей, заключения и библиографического списка.

История спутниковых навигационных систем Низкоорбитные спутниковые навигационные системы (снс)

Проблема использования для целей навигации подвижных ориентиров, вынесенных в космическое пространство, приобрела практическое решение после запуска 4 октября 1957 года первого в мире советского искусственного спутника Земли (ИСЗ).

СНС Transit («Транзит») начала разрабатываться уже в 1958 году в США.В 1959 году на орбиту выведен первый навигационный искусственный спутник Земли, а в 1964 году вступила в эксплуатацию система для обеспечения навигации американских атомных ракетных подводных лодок «Поларис». Для коммерческой эксплуатации СНС «Transit» была предоставлена в 1967 году, причем количество гражданских пользователей вскоре существенно превысило число военных. К концу 1975 года на круговых околоземных орбитах (высотой около 1000 км) находилось шесть навигационных космических аппаратов (КА), и на основе приема и выделения доплеровского сдвига частоты передатчика одного из них рассчитывались координаты наблюдателя. Масса ИСЗ составляла 56 кг. Спутник излучал сигнал на двух частотах - 150 и 400 МГц, среднеквадратическая погрешность (СКП) определения места объекта на земной поверхности составила 100 м. В 2000 году система была выведена из эксплуатации.

СНС «Цикада» - эта российская система ведет свое летосчисление с 1967 года, когда был выведен на орбиту первый навигационный спутник «Космос-192». Полностью система введена в эксплуатацию в 1979 году в составе четырех космических аппаратов, выведенных на круговые орбиты высотой 1000 км, наклонением 83 градуса и равномерным распределением плоскостей орбиты вдоль экватора. Система позволяла наблюдателю каждые 1,5-2 часа определять координаты своего места при продолжительности навигационного сеанса до 10 мин. С течением времени в результате модернизации системы СКП определения места объекта достигла 80-100 м. «Цикада» также использовала доплеровский сдвиг частоты сигнала передатчика для определения координат места. Позже космические аппараты этой системы были дооснащены аппаратурой для обнаружения терпящих бедствие объектов, оборудованных радиобуями, излучающими специальные сигналы. В настоящее время «Цикада» имеет ограниченное применение в навигации. Для определения координат кораблей ВМФ СССР использовалась низкоорбитная спутниковая навигационная система «Цикада-М», обладающая характеристиками, близкими к системе «Цикада».

Таким образом, со времен средневековых мореходов способ определения координат объекта на поверхности Земли принципиально не изменился, а лишь значительно облегчился благодаря широкому применению вычислительных устройств и чувствительной приемной аппаратуры. Для решения задачи определения координат по величине доплеровского сдвига частоты сигнала, излучаемого ИСЗ, приемная аппаратура рассчитывала скорость КА, находящегося на высоте 1000 км. Кроме того, необходимо было знать положение аппарата на орбите (эту так называемую «эфемеридную информацию» КА «сбрасывал» потребителю) и иметь на КА и в приемной аппаратуре высокостабильный генератор частоты.

Принципиально измерять расстояния можно было бы одновременно до двух ИСЗ или последовательно во времени до одного и того же спутника. На практике измерялась разность расстояний до одного и того же ИСЗ через 20-секундные интервалы времени. Поэтому в состав спутниковой навигационной системы входил наземный комплекс управления (со средствами измерения и передачи на КА данных о его положении на орбите - «эфемеридной информации»).

История создания Global Positioning System (GPS) ведёт своё начало с 1973 г., когда Управление совместных программ, входящее в состав Центра космических и ракетных исследований США, получило указание Министерства обороны США разработать, испытать и развернуть навигационную систему космического базирования. Результатом данной работы стала система, получившая первоначальное название NAVSTAR (NAVigation System with Time And Ranging), из которого прямо следовало, что система предназначена для решения двух главных задач – навигации, т. е. определения мгновенного положения и скорости потребителей, и синхронизации шкал времени. Поскольку инициатором создания GPS являлось Министерство обороны США, то в качестве первоочередных задач предусматривалось решение задач обороны и национальной безопасности. Отсюда ещё одно раннее название системы – оборонительная система спутниковой навигации (Defense Navigation Satellite System – DNSS).

Разработка концепции построения и архитектуры GPS заняла примерно 5 лет, и уже в 1974 году фирма Rockwell получила заказ на изготовление первых восьми космических аппаратов (КА) Block I для создания демонстрационной системы. Первый КА был запущен 22 февраля 1978, и в том же году Rockwell получила контракт на создание ещё четырёх КА.

Первоначально предполагалось, что орбитальная группировка GPS будет насчитывать 24 КА в трёх орбитальных плоскостях высотой 20200 км и наклонением 63°. К моменту начала серийного производства в 1989 году космических аппаратов модификации было принято решение об изменении параметров орбиты GPS, в частности, наклонение было изменено на 55°, а количество орбитальных плоскостей увеличено до 6.

Выделяют два важных этапа развёртывания системы GPS – фазу первоначальной работоспособности (IOC) и фазу полной работоспособности (FOC). Этап IOC начался в 1993 году, когда в составе орбитальной группировки насчитывалось 24 КА различных модификаций (Block I/II/IIA), готовых к использованию по целевому назначению. Переход в режим FOC состоялся в июле 1995, после завершения всех лётных испытаний, хотя фактически система начала предоставлять услуги в полном объеме с марта 1994 года. Таким образом, GPS является полностью работоспособной уже в течение более чем двух десятилетий, при этом на протяжении всей своей истории GPS постоянно модернизировалась с целью удовлетворения требований различных категорий как гражданских, так и военных потребителей.

При проектировании GPS предполагалось, что точность навигационных определений при использовании C/A-кода будет в пределах 400 м. Реальная точность измерений по C/A-коду оказалась в 10 и более раз выше – 15-40 м (СКО) по координатам и доли метра в секунду по скорости. Возможность получения такой точности измерений с помощью несложной коммерческой АП вызвала в США опасения, что сигналы GPS могут быть использованы потенциальным противником, в том числе в системах высокоточного оружия. В качестве защитной меры, начиная с космического аппарата Block II, в GPS были реализованы два метода преднамеренной деградации (загрубления) точности навигационно-временного обеспечения гражданских потребителей – селективный доступ и одновременно принятые меры по защите от так называемых уводящих помех. Деактивация режима селективного доступа была осуществлена 2 мая 2000 г. около 4:00 (UT). Точность автономной навигации возросла почти в 10 раз, что дало гигантский импульс к развитию прикладных навигационных технологий.

Текущий третий этап модернизации GPS предполагает разработку и производство космических аппаратов следующего поколения , которые в сочетании с усовершенствованным наземным комплексом управления и навигационной аппаратурой потребителей обеспечат улучшенные характеристики в части помехозащищённости, точности, доступности и целостности координатно-временного и навигационного обеспечения.

Услуги системы GPS

Система GPS предоставляет два вида услуг:

  • услугу стандартного позиционирования (Standard Positioning Service – SPS) , доступную для всех потребителей,
  • услугу точного позиционирования (Precise Positioning Service – PPS) , доступную для санкционированных потребителей.

Каждый космический аппарат излучает навигационные сигналы на нескольких несущих частотах. Квадратурные составляющие сигналов, передаваемых на каждой из несущих частот, подвергаются фазовой манипуляции различными дальномерными псевдослучайными последовательностями (ПСП). Структура некоторых из этих ПСП опубликована, соответственно данный сигнал может приниматься всеми потребителями. Структура другой части ПСП закрыта, поэтому данный сигнал доступен для приёма только санкционированным потребителям, которым структура ПСП известна.

Услуга стандартного позиционирования SPS и временной синхронизации доступна для всех категорий потребителей безвозмездно и глобально и реализуется посредством излучения всеми космическими аппаратами GPS навигационных радиосигналов, модулированных дальномерным кодом C/A (Coarse/Acquisition – грубый приём). Код C/A представляет собой ПСП Голда длительностью 1 023 символа с тактовой частотой 1,023 МГц. Таким образом, ПСП C/A-кода имеет период повторения T = 1 мс, что соответствует интервалу однозначного измерения псевдодальности около 300 км. Программа развития GPS предусматривает предоставление гражданским потребителям услуги SPS с помощью L2C, L5 и L1C.

Услуга точного позиционирования PPS реализуется посредством излучения всеми космическими аппаратами орбитальной группировки GPS навигационных радиосигналов в диапазонах L1 и L2, модулированных дальномерным P(Y)-кодом. Услуга PPS предназначена для использования исключительно вооружёнными силами США, федеральными агентствами США и вооружёнными силами некоторых союзников.

Орбитальная группировка

Штатная орбитальная группировка GPS состоит из 32 основных космических аппаратов, расположенных на шести круговых орбитах, обозначаемых латинскими буквами от A до F. Дополнительно на некоторых орбитах может находиться один или два резервных КА, предназначенных для сохранения параметров системы при выходе из строя основных КА. Наклонение орбитальных плоскостей 55°, долготы восходящих узлов различаются на 60°. Высоте орбит 20 200 км соответствует период обращения 11 ч 58 мин, т. е. орбиты космических аппаратов GPS являются синхронными.

Типы космических аппаратов

В настоящее время восполнение орбитальной группировки осуществляется запуском космических аппаратов Block IIF («F» – follow on – продолжение). В соответствии с действующими планами КА Block IIF должны сменить на орбите КА Block IIA, КА Block III придут на смену Block IIR («R» – replacement – замена).

Основной задачей КА Block III является предоставление навигационных услуг с помощью нового навигационного радиосигнала L1C и повышение точности эфемеридно-временной информации, доступности навигационного радиосигнала, мощности излучения, а также увеличение срока активного существования.

Характеристики
КА GPS BLOCK IIA
КА GPS BLOCK IIR
КА GPS BLOCK IIR-M
КА GPS BLOCK IIF
КА GPS BLOCK III
Головной подрядчик Rockwell International Lockheed Martin Lockheed Martin Boeing Lockheed Martin
Срок активного существования 7,5 лет 10 лет 10 лет 12 лет 15 лет
Масса на орбите, кг 985 1126,7 1126,7 1465,1 2161
Габариты, м 1,58×1,96×2,21 2,49×2,03×2,24 2,46×1,78×3,40
Солнечные батареи 2 кремниевые панели мощностью 710 Вт 2 кремниевые панели мощностью 1040 Вт 3 трехпереходные арсенид-галлиевые мощностью 1900 Вт 2 ультра трехпереходные (UTJ) мощностью 4480 Вт
Аккумуляторные батареи 3 никель-кадмиевые 2 никель-водородные перезаряжаемые никель-водородные перезаряжаемые 2 никель-водородные перезаряжаемые
Сигналы L1 C/A
L1/2 P(Y)
L1 C/A
L1/2 P(Y)
L1 C/A
L1/2 P(Y)
L2C
L1/2 M-Code
L1 C/A
L1/2 P(Y)
L5I
L5Q
L1M
L2M
L2C
L1 C/A
L1P(Y)
L1C
L2C
L2M
L5
L1/2 M-Code
БСУ 2 Rb, 2 Cs 3 Rb 3 Rb 2 Rb, 1 Cs 3 Rb

Навигационные радиосигналы

Спектр навигационных радиосигналов системы GPS
Характеристики навигационных радиосигналов системы GPS
Диапазон Несущая частота, МГц Сигнал Длительность
кода ПСП, символы
Тактовая частота, МГц Вид модуляции Скорость
передачи ЦИ,
БИТ/С
L1 1 575,42 C/A
P
M
L1C D
L1C P
1 023
~ 7 дней
нет данных
10 230
10 230·1 800
1,023
10,23
5,115
1,023
1,023
BPSK
BPSK
ВОС(10, 5)
ВОС(1,1)
ТМВОС(6, 1, 1/11)
50/50
50/50
нет данных
100/50
пилот-сигнал
L2 1 227,6 P
L2C
M
~ 7 дней
М: 10 230
L: 767 250
нет данных
10,23
1,023
5,115
BPSK
BPSK
ВОС(10, 5)
50/50
50/25
нет данных
L5 1 176,45 L5I
L5Q
10 230·10
10 230·20
10,23
10,23
BPSK
BPSK
100/50
пилот-сигнал
СТРУКТУРА ЦИ НАВИГАЦИОННЫХ РАДИОСИГНАЛОВ СИСТЕМЫ GPS





Внедрение новых навигационных сигналов GPS сопровождается совершенствованием структуры цифровой информации и применением новых видов модуляции, а также переходом от структуры навигационного сообщения типа NAV на структуры типа CNAV и CNAV-2.

Навигационные сообщение типа CNAV являются усовершенствованными версиями навигационного сообщения NAV, позволяющие точнее передавать оперативную и неоперативную информацию о состоянии GPS. В навигационном сообщении CNAV содержится информация того же типа, что и в сообщении NAV (текущее время, признаки состояния КА, эфемеридно-временная информация, альманах системы и т.п.), однако эта информация передается в новом формате. Вместо использования архитектуры суперкадров/кадров сообщение передается в виде пакетов различной длительности. Наиболее существенными изменениями структуры CNAV являются расширение количества космических аппаратов используемых по целевому назначению с 32 до 63, а также возможность оперативно передать данные о работоспособности конкретного аппарата (целостности) с задержкой менее 6 с.

В статье рассмотрен принцип работы, состав и особенности системы спутникового позиционирования GPS (англ. Global Positioning System).
Навигационная система Global Positioning System (GPS) является частью комплекса NAVSTAR, который разработан, реализован и эксплуатируется Министерством обороны США. Разработка комплекса NAVSTAR (NAVigation Satellites providing Time And Range – навигационная система определения времени и дальности) была начата ещё в 1973 году, а уже 22 февраля 1978 года был произведён первый тестовый запуск комплекса, а в марте 1978 года комплекс NAVSTAR начали эксплуатировать. Первый тестовый спутник был выведен на орбиту 14 июля 1974 года, а последний из 24 необходимых спутников для полного покрытия земной поверхности, был выведен на орбиту в 1993 году. Гражданский сегмент военной спутниковой сети NAVSTAR принято называть аббревиатурой GPS, коммерческая эксплуатация системы в сегодняшнем виде началась в 1995 году.
Спустя более 20-ти лет с момента тестового запуска системы GPS и 5-ти лет с момента начала коммерческой эксплуатации Глобальной системы позиционирования GPS, 1 мая 2000 года министерство обороны США отменило особые условия пользования системой GPS, существовавшие до тех пор. Американские военные выключили помеху (SA – selective availability), искусственно снижающую точность гражданских GPS приёмников, после чего точность определения координат с помощью бытовых навигаторов возросла как минимум в 5 раз. После отмены американцами режима селективного доступа точность определения координат с помощью простейшего гражданского GPS навигатора составляет от 5 до 20 метров (высота определяется с точностью до 10 метров) и зависит от условий приема сигналов в конкретной точке, количества видимых спутников и ряда других причин. Приведенные цифры соответствуют одновременному приему сигнала с 6-8 спутников. Большинство современных GPS приёмников имеют 12-канальный приемник, позволяющий одновременно обрабатывать информацию от 12 спутников. Военное применение навигации на базе NAVSTAR обеспечивает точность на порядок выше (до нескольких миллиметров) и обеспечивается зашифрованным P(Y) кодом. Информация в C/A коде (стандартной точности), передаваемая с помощью L1, распространяется свободно, бесплатно, без ограничений на использование.

Основой системы GPS являются навигационные спутники, движущиеся вокруг Земли по 6 круговым орбитальным траекториям (по 4 спутника в каждой), на высоте 20180 км. Спутники GPS обращаются вокруг Земли за 12 часов, их вес на орбите составляет около 840 кг, размеры – 1.52 м. в ширину и 5.33 м. в длину, включая солнечные панели, вырабатывающие мощность 800 Ватт. 24 спутника обеспечивают 100 % работоспособность системы навигации GPS в любой точке земного шара. Максимальное возможное число одновременно работающих спутников в системе NAVSTAR ограничено числом 37. В настоящий момент на орбите находится 32 спутника, 24 основных и 8 резервных на случай сбоев.


Слежение за орбитальной группировкой осуществляется с главной управляющей станции (Master Control Station – MCS), которая находится на базе ВВС Шривер, шт. Колорадо, США. С нее осуществляется управление системой навигации GPS в мировом масштабе. База ВВС Шривер (Schriever) является местом размещения 50-го космического соединения США – подразделения командования воздушно-космических сил.

Наземная часть системы GPS состоит из десяти станций слежения, которые находятся на островах Кваджалейн и Гавайях в Тихом океане, на острове Вознесения, на острове Диего-Гарсия в Индийском океане, а также в Колорадо-Спрингс, в мысе Канаверел, шт. Флорида и т.д.. Количество наземных станций непрерывно растет, на всех станциях слежения используются приемники GPS для пассивного слежения за навигационными сигналами всех спутников. Информация со станций наблюдения обрабатывается на главной управляющей станции MCS и используется для обновления эфемерид спутников. Загрузка навигационных данных, состоящих из прогнозированных орбит и поправок часов, производится для каждого спутника каждые 24 часа.

Определение координат и GPS навигация.
Основой идеи определения координат GPS-приемника является вычисление расстояния от него до нескольких спутников, расположение которых считается известным. Определение местоположения GPS-приёмника в пространстве осуществляется на базе алгоритма измерения расстояния от точки наблюдения до спутника. Дальнометрия основана на вычислении расстояния по временной задержке распространения радиосигнала от спутника к приемнику. Если знать время распространения радиосигнала, то пройденный им путь легко вычислить. Приёмники работают в пассивном режиме и вычисляют свои координаты, но это совсем не означает, что координаты GPS-приёмника будут известны кому либо, кроме его владельца. Каждый спутник системы GPS непрерывно генерирует радиоволны двух частот – L1=1575.42МГц и L2=1227.60МГц. Каждый GPS-приемник имеет собственный генератор, работающий на той же частоте и модулирующий сигнал по тому же закону, что и генератор спутника. Таким образом, по времени задержки между одинаковыми участками кода, принятого со спутника и сгенерированного самостоятельно, можно вычислить время распространения сигнала, а, следовательно, и расстояние до спутника.
Основная проблема при вычислении расстояния до спутника системы GPS связанна с синхронизацией часов на спутнике и в приемнике. Даже мизерная погрешность может привести к огромной ошибке в определении расстояния. Каждый спутник несет на борту высокоточные атомные часы, которые встроить в обычный GPS-приёмник невозможно. Чтобы скоррелировать временное рассогласование и избежать огромных ошибок в позиционировании, в систему GPS введен принцип избыточности для определения трехмерных координат на поверхности Земли. GPS-приёмник использует сигналы не трех, а как минимум четырех спутников и на основании вспомогательных сигналов вносит все необходимые коррективы в работу своих часов. Кроме навигационных сигналов, спутник непрерывно передает различную служебную информацию. GPS-приёмник получает, например, эфемериды (точные данные об орбите спутника), прогноз задержки распространения радиосигнала в ионосфере, а также сведения о работоспособности спутника (так называемых “альманах”, содержащий обновляемые каждые 12.5 минут сведения о состоянии и орбитах всех спутников). Эти данные передаются со скоростью 50 бит/с на частотах L1 или L2.

Расстояние до навигационных спутников системы GPS обозначим как А, В и С. Допустим, что известно расстояние А до одного спутника. В данном случае координаты GPS-приемника определить нельзя, т.к. он может находится в любой точке сферы с радиусом А, описанной вокруг спутника. Если известна удаленность В приемника от второго спутника, то определение координат также не представляется возможным – объект находится где-то на окружности (показана синим цветом), которая является пересечением двух сфер. Известное расстояние С до третьего спутника сокращает неопределенность в координатах до двух точек (обозначены красными точками). Этого уже достаточно для однозначного определения координат GPS-приемника. Не смотря на то, что мы имеем две точки с координатами, только одна находится на поверхности Земли, а вторая, ложная, оказывается либо глубоко внутри Земли, либо очень высоко над ее поверхностью. Таким образом, теоретически для трехмерной GPS навигации достаточно знать расстояния от приемника до трех спутников, но как мы уже говорили GPS-приемник, использует сигналы не трех, а как минимум четырех спутников и на основании вспомогательных сигналов вносит все необходимые коррективы для повышения точности навигации.
Недостатками GPS навигации является то, что при определённых условиях сигнал может не доходить до GPS-приёмника, поэтому практически невозможно определить своё точное местонахождение в глубине квартиры внутри железобетонного здания, в подвале или в тоннеле. Рабочая частота GPS находится в дециметровом диапазоне радиоволн, поэтому уровень приёма сигнала от спутников может ухудшиться под плотной листвой деревьев, в районах с плотной городской застройкой или из-за большой облачности, а это скажется на точности позиционирования. Магнитные бури и наземные радиоисточники тоже способны помешать нормальному приёму сигналов GPS. Карты, предназначенные для GPS навигации, быстро устаревают и могут быть не точными, поэтому нужно верить не только данным GPS-приёмника, но и своим собственным глазам. Особенно стоит отметить, что работа глобальной системы навигации GPS полностью зависима от министерства обороны США и нельзя быть уверенным, что в любой момент времени США не включит помеху (SA – selective availability) или вообще полностью отключит гражданский сектор GPS как в отдельно взятом регионе, так и вообще. Претенденты уже были. Благо, что у GPS есть альтернатива в виде навигационных систем ГЛОНАСС (Россия) и Galileo (ЕС), которые в перспективе должны получить широкое распространение.

Спутниковая навигация - это в первую очередь высокоточное средство для определения координат местопребывания физических объектов. Находить искомые объекты при помощи современных навигационных систем можно практически в любой точке планеты. Активно развивающиеся современные способны обеспечить обширное покрытие для передачи точных навигационных данных.

навигация?

Спутниковые навигационные системы представляют собой широкий комплекс электронного оборудования и в виде совокупности космического и наземного оборудования.

Навигация - это средство для определения положения объектов. Впрочем, наиболее современные средства спутниковой навигации позволяют практически безошибочно определять такие параметры, как скорость или направление движения объекта и прочее.

В основе навигационных систем лежат орбитальные спутниковые группировки, в составе которых может находиться от двух до нескольких десятков спутников. Основной их задачей является обмен радиосигналами между собой и наземными системами контроля. В свою очередь, клиентское оборудование пользователей применяется для определения нужных координат на основе полученной из центров управления навигацией информации.

Принцип работы спутниковой системы навигации

Работа спутниковых систем основана на определении расстояния от спутника до антенны объекта, координаты которого необходимо вычислить. Условная карта расположения всех спутников в системе известна как альманах. Большинство приемников спутниковой навигации способны сохранять такую карту в памяти и мгновенно получать необходимые данные. Таким образом, программы навигации на основании геометрических построений координат позволяют вычислить точное положение объекта на карте.

Персональные спутниковые навигаторы

Современные персональные навигаторы являются высокотехнологичными устройствами, предназначенными не только для приема данных спутниковой навигации, но также для предоставления пользователю богатых мультимедийных возможностей.

В сочетании с абонентским оборудованием при наличии специализированного программного обеспечения, персональные навигаторы предоставляют возможности для мониторинга как стационарных объектов, так и транспорта.

Если говорить о водителях автотранспорта, то для них навигация - это, прежде всего, возможность получения подробных рекомендаций касательно выбора наиболее удачных маршрутов, следование которым позволяет оптимизировать расход топлива и значительно сократить время в пути.

Перспективы развития спутниковых навигационных систем

В настоящее время спутниковая навигация - это система, которая глобально применяется в картографических целях. Основная часть навигационных данных, получаемых по GPS, сегодня контролируется военным ведомством США. Поэтому из года в год все более насущным вопросом для становится развертывание альтернативных систем, где наиболее перспективными выглядят европейский проект «Galileo» и российский «Глонасс».

Основываясь на мнении маркетологов, можно утверждать, что ближайшие десятилетия сулят рынку навигационных услуг существенное развитие. Подобных взглядов придерживаются также разработчики проектов в области спутниковой навигации. Подтверждением этому выступают данные многочисленных исследовательских центров, которые отмечают рост спроса на навигационные услуги среди владельцев портативных цифровых устройств.

Пожалуй, сегодня нет ни одного человека, ведущего активную жизнь, который не знал бы о существовании GPS-навигаторов. За последние несколько лет эти устройства проделали свой путь развития от дорогой автомобильной игрушки до надежного и незаменимого спутника в дороге. Технический прогресс наводнил рынки подобными системами настолько, что теперь каждый желающий может проверить в действии, что такое GPS-навигатор, найдя модель по своим потребностям и финансовым возможностям.

Несомненно, практически каждый автомобилист знаком с ситуацией, когда в дороге без карты просто не обойтись. Теперь атласы автомобильных дорог отступают на второй план, а возить их с собой имеет смысл только как резерв - на всякий случай (если откажет электроника).

Для чего нужен GPS-навигатор?

Основная функция GPS-навигатора заключается в определении вашего точного местонахождения. На цветном мониторе он покажет подробную карту местности, улицу, адреса расположения магазинов, бензоколонок, достопримечательностей и других необходимых автомобилисту объектов. Помимо этого, устройство выберет оптимальный маршрут и даже проведет по нему, предупреждая о возможных препятствиях на пути. Пропустили нужный поворот? Не нужно паники! Автомобильный GPS-навигатор быстро рассчитает и укажет альтернативный путь до пункта назначения. А чтобы водитель не отвлекался, почти в каждой разработке последних лет существует голосовой интерфейс, предупреждающий на русском языке о приближающемся повороте или смене маршрута.

Основные функции

Если устройство GPS-навигации оснащено функцией анализа информации о транспортных потоках и заторах на дорогах, то возможность наиболее оптимально миновать дорожные препятствия вам гарантирована. Особенно это полезно при пересечении незнакомых городов.

GPS-навигатор облегчает езду в ночное время. Он заранее предупреждает о каждом предстоящем повороте, изгибе и уклоне, что позволяет водителю вовремя реагировать на изменения дорожного рельефа.

Одна из серьезных проблем при движении по скоростному незнакомому шоссе - предварительный выбор полосы для последующего съезда в нужном направлении. Совершенный GPS-навигатор с легкостью подскажет, где и на какую полосу следует перестроиться.

Еще одна уникальная способность GPS-навигатора - это умение видеть дорожные знаки и вовремя предупреждать о их наличии. Так что неприятной встречи с дорожной полицией можно избежать, если какой-либо важный знак случайно остался вами не замечен.

Что лучше?

Многие часто задают вопрос: «Зачем покупать автомобильный GPS-навигатор, если в моем мобильном телефоне (коммуникаторе) все функции для связи со спутником уже реализованы?» Вопрос вполне уместный, если учесть, что задают его, как правило, люди, никогда не сидевшие за рулем.

Основное преимущество отдельного автонавигатора - это удобство пользования благодаря большому экрану. Согласитесь, что смотреть одним глазом на дорогу, а другим вглядываться в пятидюймовый смартфон - не совсем комфортно, да и небезопасно. Слышать заботливые подсказки автоответчика приятно, но куда лучше представлять себе картину пути наглядно, когда видно, где находишься и что ждет впереди. Сенсорный интерфейс позволяет управлять программой, водя пальцем по экрану, не отрывая от него взгляд. Конечно, в современных коммуникаторах и карманных компьютерах (КПК) тоже имеется такая возможность. И все бы ничего, если бы не маленький экран и слабочувствительный GPS-модуль.

Встроенный в автомобильный навигатор чувствительный GPS-приемник с мощной антенной позволяет более надежно принимать сигналы со спутника на всем пути следования.


Сердцем автонавигатора является современный процессор, специально разработанный для подобных систем (SIRFatlas) и максимально оптимизированный для анализа спутниковых навигационных сигналов. А это, в свою очередь, позволяет обрабатывать более емкую информацию, выводя на экран такие мелкие детали местности, которые не под силу расшифровать процессору мобильного телефона.

Дополнительные возможности

Автонавигаторы последнего поколения могут выступать в качестве монитора камеры видеонаблюдения, а также телеэкрана для просмотра спутникового телевидения. Звуковой выход можно подключить к автомобильной аудиосистеме, что позволит при помощи регулировки громкости и тембра отчетливо прослушивать навигационные подсказки автоответчика в любых шумовых условиях.

Если мы затронули такое устройство, как GPS-навигатор для автомобиля, то полностью описать его возможности как прибора, имеющего процессор и монитор, не удастся. С каждым днем эта техника модернизируется. И неудивительно, если скоро автонавигатор будет представлять собой мощный, адаптированный к автомобилю компьютер с возможностями, о которых мы можем только догадываться.

Если комфорт в путешествии и уверенность на дороге для вас - немаловажный фактор, то спутниковый GPS-навигатор - это то, чем вам следует обзавестись в первую очередь. Ведь современный мир с большой и емкой дорожной инфраструктурой усложняет жизнь водителям, вынужденным постоянно следить за дорогой, находясь порой в крайнем нервном напряжении. Приобретите достойный для себя электронный путеводитель - и когда-то напряженная езда по переполненным уличным магистралям превратится в отдых, а возможно, и в приятное развлечение.



Похожие публикации