Исембергенов Н.Т Методы и средства измерений и контроля электрических величин. Учебно методичный комплекс - файл n1.doc

Методы измерения токов и напряжений зависят от величины и вида этих электрических величин.

Для определения малых постоянных токов можно использовать как прямые, так и косвенные измерения. В первом случае ток можно измерять зеркальными гальванометрами и стрелочными магнитоэлектрическими приборами. Наименьший ток, который можно измерить зеркальным гальванометром, равен приблизительно 10" п А, а стрелочный магнитоэлектрический прибор позволяет измерить величину 10 6 А.

Косвенно неизвестный ток определяют по падению напряжения на высокоомном резисторе или по заряду, накопленному конденсатором. В качестве приборов используются баллистические гальванометры с минимально измеряемым током 10‘ 12 А и электрометры с минимально измеряемым током 10 17 А.

Электрометрами называют приборы высокой чувствительности по напряжению с входным сопротивлением до 10 15 Ом. Механизм электрометра представляет собой разновидность механизма электростатического прибора, который имеет один подвижный и несколько неподвижных электродов, находящихся под разными потенциалами.

Квадрантный электрометр представлен на рис. 2.1.

Рис. 2.1.

Устройство имеет подвижную часть 1 с зеркалом 2, которая закреплена на подвесе 3 и расположена внутри четырех неподвижных электродов 4, называемых квадрантами. Измеряемое напряжение Их включается между подвижной частью и общей точкой, а на квадранты от вспомогательных источников подаются постоянные напряжения U, значения которых равны, но противоположны по знаку. Отклонение подвижной части в этом случае равно

где С - емкость между подвижным электродом и двумя соединенными между собой квадрантами, М- удельный противодействующий момент, зависящий от конструкции подвеса. Отклонение подвижной части, а следовательно, и чувствительность электрометра пропорциональны вспомогательному напряжению U, значение которого обычно выбирают в пределах до 200 В. Чувствительность квадрантных электрометров при вспомогательном напряжении 200 В достигает 10 4 мм/В.

К средним токам и напряжениям условно можно отнести токи в диапазоне от 10 мА до 100 А и напряжения от 10 мВ до

600 В. Для измерения средних постоянных токов можно использовать прямые и косвенные измерения. Для измерения напряжений используют только прямые измерения.

При прямых измерениях ток и напряжение можно измерять приборами магнитоэлектрической, электромагнитной, электродинамической и ферродинамической систем, а также электронными и цифровыми приборами Напряжение можно измерять приборами электростатической системы и потенциометрами постоянного тока.

Наиболее точные приборы магнитоэлектрической системы, предназначенные для измерения средних токов и напряжений, имеют класс точности 0,1.

В тех случаях, когда необходимо измерить напряжение или ток с высокой точностью, используют потенциометры постоянного тока, цифровые вольтметры и амперметры. Класс точности наиболее точных потенциометров 0,001, цифровых вольтметров - 0,002, а цифровых амперметров - 0,02. Измерение тока при помощи потенциометра проводят косвенным путем, при этом искомый ток определяют по падению напряжения на образцовом резисторе. Преимуществом потенциометров и цифровых приборов является малое потребление мощности.

Измерение больших токов и напряжений проводят с помощью аттенюаторов. Шунтирование магнитоэлектрических приборов дает возможность измерять постоянные токи до нескольких тысяч ампер. Обычно для измерения больших токов часто используют несколько шунтов, соединенных параллельно. Несколько одинаковых шунтов подключают в разрыв шины, а проводники от потенциальных зажимов всех шунтов подводят к одному и тому же прибору.

Электростатические вольтметры позволяют измерять напряжения до 300 кВ. Для определения более высоких значений напряжения используют измерительные трансформаторы.

Для оценки переменных токов и напряжений используют понятия действующего или среднеквадратического значения, амплитудного или максимального значения и средневыпрям- ленного значения.

Действующее, амплитудное и средневыпрямленное значения связаны между собой через коэффициент формы кривой и коэффициент амплитуды.

Коэффициент формы сигнала равен

где U a - действующее значение сигнала, U cp - средневыпрямленное значение сигнала.

Коэффициент амплитуды сигнала определяется как

где - амплитудное значение сигнала.

Значения этих коэффициентов зависят от формы кривой напряжения или тока. Для синусоиды = 1,11 и к а = л/2 = 1,41. Отсюда, измерив одно из трех указанных выше значений измеряемой величины, можно определить остальные.

При несинусоидальном сигнале чем ближе он будет к прямоугольной форме, тем ближе к единице будут коэффициенты кф и к и. Для узкой и острой формы кривой измеряемой величины эти коэффициенты будут иметь большее значение.

Приборы электродинамической, ферродинамической, электромагнитной, электростатической и термоэлектрической систем реагируют на действующее значение измеряемой величины. Приборы выпрямительной системы реагируют на средневыпрямленное значение измеряемой величины. Приборы электронной системы, как аналоговые, так и цифровые, в зависимости от типа измерительного преобразователя переменного напряжения в постоянное, могут реагировать на действующее, средневыпрямленное или амплитудное значение измеряемой величины.

Вольтметры и амперметры всех систем обычно градуируют в действующих значениях при синусоидальной форме кривой тока. При несинусоидальной форме кривой у приборов, реагирующих на средневыпрямленное или амплитудное значение тока или напряжения, будет возникать дополнительная погрешность, так как коэффициенты кф и к а при несинусоидальной форме кривой отличаются от соответствующих значений для синусоиды.

Измерение и контроль тока и напряжения в условиях агропромышленного производства – наиболее распространенный вид измерений электрических величин. В зависимости от рода, частоты и формы кривой тока применяют те или иные методы и средства измерений и контроля тока и напряжения. Ток и напряжение непосредственно измеряют электромеханическими и цифровыми амперметрами и вольтметрами со стрелочными или цифровыми отсчетными устройствами. Применение метода сравнения с мерой позволяет измерять величины с меньшими погрешностями, чем непосредственно.

Измерения в цепях постоянного тока. В условиях производства и при научных исследованиях возникает необходимость в измерении и контроле в установках постоянного тока от 10 –17 до 10 6 А и напряжений от 10 –7 до 10 8 В . Для этого используют различные средства.

Малые токи и напряжения измеряют непосредственно приборами высокой чувствительности - магнитоэлектрическими гальванометрами.

Постоянные токи не более 200 мА измеряютмагнитоэлектрическими миллиамперметрами.

Непосредственное измерение и контроль напряжений (до 600 В ) в установках постоянного тока осуществляют магнитоэлектрическими вольтметрами.

Для регистрации токов и напряжений в цепях постоянного тока используют самопишущие приборы.

Измерения в цепях синусоидального тока связаны с определением среднего (средневыпрямленного), действующего (среднего квадратичного) и амплитудного (максимального) значений тока и напряжения. Поскольку все эти значения связаны между собой коэффициентами формыилии амплитуды или, можно измерив одно из них, определить другие. Для измерения средних значений применяют электронные и цифровые приборы. Для измерения действующих значений тока (до 100А ) и напряжения (до 600В ) в цепях синусоидального токапромышленной частоты применяют в основном электромагнитные приборы. Для измерения тока и напряжения в установках сповышенными частотами (например, в установках с ручным инструментом) электромагнитные приборы не используют из-за больших погрешностей измерений. Для этого применяют тепловые, электронные и цифровые приборы.Мгновенные значения токов и напряжений различной формы и частоты регистрируют с помощью самопишущих приборов и электронно-лучевых осциллографов.

В трехфазных системах токи и напряжения измеряют теми же приборами, что и в однофазных цепях. В симметричной трехфазной системе для контроля линейных токов и напряжений можно использовать один амперметр или вольтметр. В несимметричных системах для контроля линейных напряжений часто применяют один вольтметр с переключателем.

Независимо от способа и применяемого средства измерений и контроля тока и напряжения результаты измерений содержат погрешности, одна из составляющих которых обусловлена потреблением мощности измерительными приборами. Так, при включении амперметра с сопротивлением
в цепь с напряжениемU по цепи протекает ток меньший, чем до включения прибора. Если ток в цепи до включения амперметра(здесь– сопротивление цепи без прибора), а после его включения, то относительная погрешность измерения тока

Поэтому для измерения тока следует выбирать амперметр с возможно меньшим сопротивлением, а для измерения напряжения – вольтметр с возможнобольшим сопротивлением. В этом случае погрешности измерений будут минимальными.

О влиянии метрологических свойств вольтметров на оценку качества напряжения можно судить по следующему примеру. Действующими для сельских электрических сетей нормами допускаются колебания напряжения на входе потребителя до 5 % от номинального. Если для измерения напряжения в сети 22011В (с учетом колебания) использовать вольтметр класса точности 1,5 с диапазоном измерений 0...250В , то он может показать 22014,75В , что превышает нормируемое колебание на1,7%.

Изучение электроизмерительных приборов. Методы расширения пределов измерения электроизмерительных приборов.

Цели работы:

1. Ознакомиться с методами расширения пределов электроизмерительных приборов;

3. Изготовить омметр и провести измерение сопротивлений с его помощью.

Приборы:

1. Гальванометр (миллиамперметр 50-100-200мА);

2. Амперметр (1-2) А;

3. Вольтметр (15-60) В;

4. Реостат (30 Ом);

5. Магазин сопротивлений типа Р-33;

6. Источник напряжения (типа ВС-24);

7. Проволока для изготовления шунта (медь);

8. Масштабная линейка;

9. Микрометр;

10. Соединительные провода

Примечание : Технические характеристики приборов записать в рабочую тетрадь.

Введение

Электрические измерения

Средства измерений – это особые технические средства, приводимые во взаимодействие с материальным объектом. Результатом измерений является значение физической величины. Физические величины подразделяют на непрерывные (аналоговые) и дискретные (квантованные). Большинство физических величин являются аналоговыми (напряжение, сила тока, температура, длина и т.д.). квантованной величиной является, например, электрический заряд.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для непосредственного восприятия наблюдателем.

Существуют следующие основные группы средств для измерения электрических, магнитных и неэлектрических физических величин:

Аналоговые электромеханические и электронные приборы

Цифровые измерительные приборы и аналого-цифровые преобразователи

Измерительные преобразователи электрических и неэлектрических величин в электрические сигналы

Регистрирующие приборы (самопишущие приборы, осциллографы, магнитографы и др.

Измерительные информационные системы и вычислительные комплексы и т.д.

Все приборы делятся на аналоговые измерительные приборы (например, электроизмерительный прибор с отсчетным устройством в виде стрелки, перемещающейся по шкале с делениями) и цифровые измерительные приборы (показания представляются в цифровой форме). Цифровые снабжены цифровым дисплеем, который показывает измеренное значение величины в виде числа. Цифровые приборы более точны, более удобны при снятии показаний и, в общем, более универсальны. В них измеряемая величина (например, напряжение) автоматически сравнивается с эталонной величиной, после ряда преобразований результат сравнения выдается на экран в виде светящегося числа. Цифровые универсальные измерительные приборы («мультиметры») и цифровые вольтметры применяются для измерения со средней и высокой точностью сопротивления постоянному току, а также напряжения и силы переменного тока.

Для самых точных измерений сопротивления и полного сопротивления (импеданса) существуют измерительные мосты и другие специализированные измерители. Для регистрации хода изменения величины во времени применяются региотрирующие приборы – ленточные самописцы и электронные осциллографы, аналоговые и цифровые. В цифровых измерительных приборах (кроме простейших) используются электронные блоки для преобразования входного сигнала в сигнал напряжения, который затем преобразуется в цифровую форму аналого-цифровым преобразователем (АЦП). Число, выражающее измеренное значение, выводится на светодиодный, вакуумный люминесцентный или жидкокристаллический индикатор (дисплей). Прибор обычно работает под управление встроенного микропроцессора, причем в простых приборах микропроцессор объединяется с АЦП на одной интегральной схеме.

Аналого-цифровые преобразователи. Существуют три основных типа АЦП: интегрирующий, последовательного приближения и параллельный. Интегрирующий АЦП усредняет входной сигнал по времени. Из трех перечисленных типов это самый точный, хотя и самый «медленный». Время преобразования интегрирующего АЦП лежит в диапазоне от 0,01 до 50 с и более, погрешность составляет 0,1 – 0,003 %. Погрешность АЦП последовательного приближения несколько больше (0,4 – 0,002 %), но зато время преобразования от ~ 10мкс до ~ 1мс.

Параллельные АЦП – самые быстродействующие, но и наименее точные: их время преобразования порядка 0,25 нс, погрешность – от 0,4 до 2%.

По роду измеряемой величины электроизмерительные приборы делят на следующие группы: амперметры (для измерения величины тока), вольтметры (для измерения напряжения), омметры (для измерения сопротивления), ваттметры (для измерения мощности), частотомеры (для измерения частоты), фазометры (для измерения сдвига фаз в электрических цепях) и т.д.

По способу представления результатов измерений приборы и устройства можно разделить на показывающие и регистрирующие. По методу измерения средства электроизмерительной техники можно разделить на приборы непосредственной оценки и приборы сравнения (уравновешивания). По способу применения и по конструкции электроизмерительные приборы и устройства делятся на щитовые, переносные и стационарные. По точности измерения приборы делятся на измерительные (в которых нормируются погрешности); индикаторы, или внеклассные приборы (погрешность измерений больше предусматриваемой соответствующими стандартами), и указатели (погрешность не нормируется).

По принципу действия или физическому явлению можно выделить следующие укрупненные группы: электромеханические, электронные, термоэлектрические и электрохимические. В зависимости от способа защиты схемы прибора от воздействия внешних условий корпуса приборов делятся на обыкновенные, водо-, газо-, и пылезащищенные, герметические, взрывобезопасные.

Измерение электрических величин

Гальванометр – электроизмерительный прибор с неградуированной шкалой, имеющий высокую чувствительность к току или напряжению и предназначенный для измерения весьма малых токов, напряжений, величины заряда. Используя комбинацию гальванометра с различными шунтами и добавочными сопротивлениями, можно изготовить приборы для измерения различных электрических величин (амперметры, вольтметры и т.д.)

Измерение токов

Для непосредственного измерения тока в цепи применятся амперметры, которые включаются в цепь так, чтобы через них проходил весь измеряемый ток, т.е. последовательно тем участкам цепи, где необходимо измерить ток. Амперметр должен иметь малое сопротивление, чтобы его включение в цепь не могло заметно изменить величину тока в цепи. Существуют четыре схемы включения амперметра в цепь. Первые две (рис. 1а, 16) предназначены для измерения постоянного тока, а две вторые схемы

( 1в,1г) – для измерения переменного тока.

Вторая и четвертая схемы (рис 16,1 г) применяются в тех случаях, когда номинальные данные амперметра меньше измеряемой величины тока. В этом случае при определении истинного значения тока нужно учитывать коэффициент преобразования.

Для расширения пределов измерения амперметра параллельно ему необходимо присоединить проводник, называемый шунтом. Признаком параллельного соединения является разветвление тока. В данном случае электрический ток I 0 разветвляется на два тока I 0 и I m (рис.2), где R r – сопротивление гальванометра (исходного амперметра), I r – ток, протекающий через гальванометр (исходный амперметр), R m – сопротивление шунта, I ш – ток, протекающий через шунт, I 0 - ток, измеряемый амперметром с шунтом («новый» прибор).

Из закона сохранения зарядов следует, что:

I a = I m +I a (1)

Напряжение при параллельном соединении в ветвях одинаково, поэтому можно записать:

U= I m R m =I a R a

Откуда следует, что

При параллельном соединении проводников токи в отдельных проводниках обратно пропорциональны их сопротивлениям, т.е. чем меньше сопротивление шунта по сравнению с сопротивлением приборов, тем большая часть измеряемого тока отводится через шунт.

Коэффициентом шунта называется число, показывающее, во сколько раз предельный ток, измеряемый амперметром с шунтом, больше предельного тока, измеряемого гальванометром (исходной амперметром) без шунта:

Разделив обе части равенства (1) на I r , получим:

Но, так как

Равенство (4) можно записать так:

n = R r / R ш +1

Отсюда сопротивление шунта равно:

Таким образом, чтобы измерить амперметром в n раз больший ток, необходимо взять сопротивление шунта в (n-1) меньше сопротивления исходного амперметра.

где ρ – удельное сопротивление материала шунта,

L - длина проводника

S = / 4 – площадь поперечного сечения проводника, из которого изготовлен шунт

d – диаметр проволоки

Обычно шунты изготавливают из манганина, имеющего большое удельное сопротивление и малый термический коэффициент сопротивления.

Измерение напряжений

Для измерения напряжений в цепи применяются вольтметры, которые включаются в цепь параллельно (к тем точкам цепи, между которыми измеряется напряжение). Вольтметр должен иметь очень высокое внутреннее сопротивление, чтобы не влиять заметно на режим исследуемой цепи. Измерение напряжения производится вольтметром. Здесь также возможны четыре различных схемы подключения прибора (рис.3).

В этих схемах также используются методы расширения пределов измерения напряжения (вторая и четвертая схемы рис.3б, 3г), для расширения предела измерения вольтметра последовательно с ним включается добавочное сопротивление R 0 (рис.4).

По закону Ома:

или (7)

Средство измерений - техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (а пределах установленной погрешности) в течение известного интервала времени. Данное определение вскрывает суть средства измерений, заключающуюся в способности хранить (или воспроизводить) единицу физической величины, а также в неизменности размера хранимой единицы. Эти факторы и обусловливают возможность выполнения измерения.

По назначению средства измерений разделяют на меры, измерительные преобразователи, измерительные приборы, измерительные установки и измерительные системы.

Мера — средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью.

Различают следующие разновидности мер:

● однозначная мера — мера воспроизводит физическую величину, одного размера;

многозначная мера — мера воспроизводит физическую величину разных размеров;

набор мер — комплект мер разного размера одной и той же физической величины;

● магазин мер ~ набор мер, конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях. Например, магазин электрических сопротивлений обеспечивает ряд дискретных значений сопротивлений.

Некоторые меры воспроизводят одновременно значения двух физических величин. Мера необходима при методе сравнения для выполнения сравнения с ней измеряемой величины и получения ее значения.

Измерительный преобразователь — техническое средство с нормированными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации или передачи. Принцип его действия основан на различных физических явлениях. Измерительный преобразователь преобразует любые физические величины (электрические, неэлектрические, магнитные) в электрический сигнал.

По характеру преобразования различают аналоговые, аналого-цифровые преобразователи (АЦП), преобразующие непрерывную величину в числовой эквивалент, цифроаналоговые преобразователи (ЦАП), выполняющие обратное преобразование.

По месту в измерительной цепи преобразователи разделяют на первичный, на который непосредственно воздействует измеряемая физическая величина; промежуточный, включенный в измерительную цепь после первичного; преобразователи, предназначенные для масштабного преобразования, т.е. для изменения значения величины в некоторое число раз; передающие, обратные для включения в цепь обратной связи и др.

К измерительным преобразователям можно отнести преобразователи переменного напряжения в постоянное, измерительные трансформаторы напряжения и тока, делители тока, напряжения, усилители, компараторы, термопару и др. Измерительные преобразователи входят в состав какого-либо измерительного прибора, измерительной установки, измерительной системы или применяются вместе с каким-либо средством измерений.

Измерительный прибор (ИП) — средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Приборы бывают показывающие и регистрирующие, цифровые и аналоговые.

Измерительная установка — совокупность функционально объединенных мер, измерительных преобразователей, измерительных приборов и других устройств. Предназначена для измерений одной или нескольких физических величин и расположена в одном месте, например, установка для измерения характеристик транзистора, установка для измерения мощности в трехфазных цепях и др,

Измерительная система — совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого объекта с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки сигналов в разных целях.

В зависимости от назначения измерительные системы разделяют на измерительные информационные, контролирующие, технической диагностики и др. Широкое распространение имеют микропроцессорные измерительные системы — управляющие вычислительные системы с микропроцессором (МП) в качестве узла обработки информации. В общем случае в состав МП входят: арифметическо-логическое устройство, блок внутренних регистров для временного хранения данных и команд, устройство управления, внутренние магистрали шин, шины ввода - вывода данных для подключения внешних устройств.

Измерением называется процесс нахождения опытным путем значения физической величины с помощью специальных технических средств. Электроизмерительные приборы широко используются при наблюдении за работой электроустановок, при контроле за их состоянием и режимами работы, при учете расхода и качества электрической энергии, при ремонте и наладке электротехнического оборудования.

Электроизмерительными приборами называют средства электрических измерений, предназначенные для выработки сигналов, функционально связанных с измеряемыми физическими величинами в форме, доступной для восприятия наблюдателем или автоматическим устройством.

Электроизмерительные приборы делятся:

  • по виду получаемой информации на приборы для измерения электрических (ток, напряжение, мощность и др.) и неэлектрических (температура, давление и др.) величин;
  • по методу измерения - на приборы непосредственной оценки (амперметр, вольтметр и др.) и приборы сравнения (измерительные мосты и компенсаторы);
  • по способу представления измеряемой информации - на аналоговые и дискретные (цифровые).

Наибольшее распространение получили аналоговые приборы непосредственной оценки, которые классифицируются по признакам: род тока (постоянный или переменный), род измеряемой величины (ток, напряжение, мощность , сдвиг фаз), принцип действия (магнитоэлектрические, электромагнитные, электро- и ферродинамические), класс точности и условия эксплуатации.

Для расширения пределов измерения электрических приборов на постоянном токе используются шунты (для тока) и добавочные сопротивления Rd (для напряжения); на переменном токе трансформаторы тока (тт) и напряжения (тн).

Используемые приборы для измерения электрических величин.

Измерение напряжения осуществляется вольтметром (V), подключаемым непосредственно на зажимы исследуемого участка электрической цепи.

Измерение тока осуществляется амперметром (А), включаемым последовательно с элементами исследуемой цепи.

Измерение мощности (W) и сдвига фаз () в цепях переменного тока производится с помощью ваттметра и фазометра. Эти приборы имеют две обмотки: неподвижную токовую, которая включается последовательно, и подвижную обмотку напряжения, включаемую параллельно.

Для измерения частоты переменного тока (f) применяются частотометры.

Для измерения и учета электрической энергии - счетчики электрической энергии, подключаемые к измерительной цепи аналогично ваттметрам.

Основными характеристиками электроизмерительных приборов являются: погрешность, вариации показаний, чувствительность, потребляемая мощность, время установления показаний и надежность.

Основными частями электромеханических приборов являются электроизмерительная цепь и измерительный механизм.

Измерительная цепь прибора является преобразователем и состоит из различных соединений активного и реактивного сопротивлений и других элементов в зависимости от характера преобразования. Измерительный механизм преобразует электромагнитную энергию в механическую, необходимую для углового перемещения его подвижной части относительно неподвижной. Угловые перемещения стрелки а функционально связано с крутящим и противодействующим моментом прибора уравнением преобразования вида:

к - конструктивная постоянная прибора;

Электрическая величина, под действием которой стрелка прибора отклоняется на угол

На основании данного уравнения можно утверждать, что если:

  1. входная величина Х в первой степени (п=1), то а будет менять знак при изменении полярности, и на частотах, отличных от 0, прибор работать не может;
  2. n=2, то прибор может работать как на постоянном, так и на переменном токе;
  3. в уравнение входит не одна величина, то в качестве входной можно выбирать любую, оставляя остальные постоянными;
  4. две величины являются входными, то прибор можно использовать в качестве множительного преобразователя (ваттметр, счетчик) или делительного (фазометр, частотометр);
  5. при двух или более входных величинах на несинусоидальном токе прибор обладает свойством избирательности в том смысле, что отклонение подвижной части определяется величиной только одной частоты.

Общими элементами являются: отсчетное устройство, подвижная часть измерительного механизма, устройства для создания вращающего, противодействующего и успокаивающего моментов.

Отсчетное устройство имеет шкалу и указатель. Интервал между соседними метками шкалы называют делением.

Цена деления прибора представляет собой значение измеряемой величины, вызывающее отклонение стрелки прибора на одно деление и определяется зависимостями:

Шкалы могут быть равномерными и неравномерными. Область между начальным и конечным значениями шкалы называют диапазоном показаний прибора.

Показания электроизмерительных приборов несколько отличаются от действительных значений измеряемых величин. Это вызвано трением в измерительной части механизма, влиянием внешних магнитных и электрических полей, изменением температуры окружающей среды и т.д. Разность между измеренным Аи и действительным Ад значениями контролируемой величины называется абсолютной погрешностью измерений:

Так как абсолютная погрешность не дает представления о степени точности измерений, то используют относительную погрешность:

Поскольку действительное значение измеряемой величины при измерении неизвестно, для определения и можно воспользоваться классом точности прибора.

Амперметры, вольтметры и ваттметры подразделяются на 8 классов точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Цифра, обозначающая класс точности, определяет наибольшую положительную или отрицательную основную приведенную погрешность, которую имеет данный прибор. Например, для класса точности 0,5 приведенная погрешность составит ±0,5%.

Технические характеристики амперметров
Наименование параметра Амперметры Э47 Вольтметры Э47
Система электромагнитная электромагнитная
Способ вывода информации аналоговый аналоговый
Диапазон измерений 0...3000 А 0...600 В
Способ установки на панель щита на панель щита
Способ включения <50 А- непосредственный, >100 А-через трансформатор тока с вторичным током 5 А непосредственный
Класс точности 1,5 1,5
Предел допускаемой основной погрешности приборов, % ±1,5 ±1,5
Номинальное рабочее напряжение, не более 400 В 600 В
Допустимая длительная перегрузка (не более 2 ч) 120% от конечного значения диапазона измерений
Средняя наработка до отказа, не менее, ч 65000 65000
Средний срок службы, не менее, лет 8 8
Температура окружающего воздуха, °С 20±5 20±5
Частота измеряемой величины, Гц 45...65 45...65
Положение монтажной плоскости вертикальное вертикальное
Габариты, мм 72x72x73,5 96x96x73,5 72x72x73,5 96x96x73,5

Электроизмерительные приборы (амперметры и вольтметры) серии Э47

Применяются в низковольтных комплектных устройствах в распределительных электрических сетях жилых, коммерческих и производственных объектов.

Амперметры Э47 - аналоговые электромагнитные электроизмерительные приборы - предназначены для измерения силы тока в электрических цепях переменного тока.

Вольтметры Э47 - аналоговые электромагнитные электроизмерительные приборы - предназначены для измерения напряжения в электрических цепях переменного тока.

Широкий диапазон измерений: амперметры до 3000 А, вольтметры до 600 В. Класс точности 1.5.

Амперметры, рассчитанные на измерение токов выше 50 А подключают к измеряемой цепи через трансформатор тока с номинальным вторичным рабочим током 5 А.

Принцип действия амперметров и вольтметров серии Э47

Амперметры и вольтметры Э47 относятся к приборам с электромагнитной системой. В составе имеют круглую катушку с помещенными внутрь подвижным и неподвижным сердечниками. При протекании тока через витки катушки, создается магнитное поле, намагничивающее оба сердечника. Вследствие чего.

одноименные полюса сердечников отталкиваются, и подвижный сердечник поворачивает ось со стрелкой. Для защиты от негативного влияния внешних магнитных полей, катушка и сердечники защищены металлическим экраном.

Принцип действия приборов магнитоэлектрической системы основан на взаимодействии поля постоянного магнита и проводников с током, а электромагнитной - на втягивании стального сердечника в неподвижную катушку при существовании в ней тока. Электродинамическая система имеет две катушки. Одна из катушек, подвижная, укрепляется на оси и располагается внутри неподвижной катушки.

Принцип действия прибора, возможность его работы в тех или иных условиях, возможные предельные погрешности прибора могут быть установлены по условным обозначениям, нанесенным на циферблат прибора.

Например: (А) - амперметр; (~) - переменный ток в пределах от 0 до 50А; () - вертикального положения, класс точности 1,0 и т.д.

Измерительные трансформаторы тока и напряжения имеют ферромагнитные магнитопроводы, на которых располагаются первичные и вторичные обмотки. Число витков вторичной обмотки всегда больше первичной.

Зажимы первичной обмотки трансформатора тока обозначают буквами Л1 и Л2 (линия), а вторичной - И1 и И2 (измерение). По правилам техники безопасности один из зажимов вторичной обмотки трансформатора тока, так же, как и трансформатора напряжения, заземляют, что делается на случай повреждения изоляции. Первичную обмотку трансформатора тока включают последовательно с объектом, у которого проводят измерения. Сопротивление первичной обмотки трансформатора тока мало по сравнению с сопротивлением потребителя. Вторичная обмотка замыкается на амперметр и токовые цепи приборов (ваттметр, счетчик и т. д.). Токовые обмотки ваттметров, счетчиков и реле рассчитывают на 5А, вольтметры, цепи напряжения ваттметров, счетчиков и обмоток реле - на 100 В.

Сопротивления амперметра и токовых цепей ваттметра невелики, поэтому трансформатор тока работает фактически в режиме короткого замыкания. Номинальный ток вторичной обмотки равен 5А. Коэффициент трансформации трансформатора тока равен отношению первичного тока к номинальному току вторичной обмотки, а у трансформатора напряжения - отношению первичного напряжения ко вторичному номинальному.

Сопротивление вольтметра и цепей напряжения измерительных приборов всегда велико и составляет не менее тысячи Ом. В связи с этим трансформатор напряжения работает в режиме холостого хода.

Показания приборов, включенных через трансформаторы тока и напряжения, необходимо умножать на коэффициент трансформации.

Трансформаторы тока ТТИ

Трансформаторы тока ТТИ предназначены: для применения в схемах учета электроэнергии при расчетах с потребителями; для применения в схемах коммерческого учета электроэнергии; для передачи сигнала измерительной информации измерительным приборам или устройствам защиты и управления. Корпус трансформатора выполнен неразборным и опломбирован наклейкой, что делает невозможным доступ ко вторичной обмотке. Клеммные зажимы вторичной обмотки закрываются прозрачной крышкой, что обеспечивает безопасность при эксплуатации. Кроме того, крышку можно опломбировать. Это особенно важно в схемах учета электроэнергии, так как позволяет исключить несанкционированный доступ к клеммным зажимам вторичной обмотки.

Встроенная медная луженая шина у модификации ТТИ-А - дает возможность подключения как медных, так и алюминиевых проводников.

Номинальное напряжениe - 660 В; номинальная частота сети - 50 Гц; класс точности трансформатора 0,5 и 0,5S; номинальный вторичный рабочий ток - 5А.

Технические характеристики трансформаторов ТТИ
Модификации трансформаторов Номинальный первичный ток трансформатора, А
ТТИ-А 5; 10; 15; 20; 25; 30; 40; 50; 60; 75; 80; 100; 120; 125; 150; 200; 250; 300; 400; 500; 600; 800; 1000
ТТИ-30 150; 200; 250; 300
ТТИ-40 300; 400; 500; 600
ТТИ-60 600; 750; 800; 1000
ТТИ-85 750; 800; 1000; 1200; 1500
ТТИ-100 1500; 1600; 2000; 2500; 3000
ТТИ-125 1500; 2000; 2500; 3000; 4000; 5000

Электронные аналоговые приборы представляют собой сочетание различных электронных преобразователей и магнитоэлектрического прибора и служат для измерения электрических величин. Они обладают высоким входным сопротивлением (малым потреблением энергии от объекта измерения) и высокой чувствительностью. Используются для измерения в цепях повышенной и высокой частоты.

Принцип действия цифровых измерительных приборов основан на преобразовании измеряемого непрерывного сигнала в электрический код, отображаемый в цифровой форме. Достоинствами являются малые погрешности измерения (0.1-0,01 %) в широком диапазоне измеряемых сигналов и высокое быстродействие от 2 до 500 измерений в секунду. Для подавления индустриальных помех они снабжены специальными фильтрами. Полярность выбирается автоматически и указывается на отсчетном устройстве. Содержат выход на цифропечатающее устройство. Используются как для измерения напряжения и тока, так и пассивных параметров - сопротивление, индуктивность, емкость. Позволяют измерять частоту и ее отклонение, интервал времени и число импульсов.



Похожие публикации